Viscosity, Shear Waves, and Atomic-Level Stress-Stress Correlations
نویسندگان
چکیده
منابع مشابه
Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow.
Wall shear stress (WSS) is one of the most studied hemodynamic parameters, used in correlating blood flow to various diseases. The pulsatile nature of blood flow, along with the complex geometries of diseased arteries, produces complicated temporal and spatial WSS patterns. Moreover, WSS is a vector, which further complicates its quantification and interpretation. The goal of this study is to i...
متن کاملInfluence of Rigidity, Irregularity and Initial Stress on Shear Waves Propagation in Multilayered Media
The propagation of shear waves in an anisotropic fluid saturated porous layer over a prestressed semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary has been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the pertur...
متن کاملPlatelets and shear stress.
C LINICAL BLEEDING or thrombosis results from a disturbance in the balance between a complex network of procoagulant and anticoagulant factors. This network involves three primary interactions, first described by the eminent pathologist Rudolph Virchow during the previous century, between blood (soluble and cellular constituents), the blood vessel (including fixed and dynamic responses), and bl...
متن کاملShear Stress and Atherosclerosis
Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo a...
متن کاملAtomic-level Stress Calculation and Continuum-Molecular System Equivalence
An atomistic level stress tensor is defined with physical clarity, based on the SPH method. This stress tensor rigorously satisfies the conservation of linear momentum, and is appropriate for both homogeneous and inhomogeneous deformations. The formulation is easier to implement than other stress tensors that have been widely used in atomistic analysis, and is validated by numerical examples. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2011
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.106.115703